Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.21.22281330

ABSTRACT

Background: Decision-makers impose COVID-19 mitigations based on public health indicators such as reported cases, which are sensitive to fluctuations in supply and demand for diagnostic testing, and hospital admissions, which lag infections by up to two weeks. Imposing mitigations too early has unnecessary economic costs, while imposing too late leads to uncontrolled epidemics with unnecessary cases and deaths. Sentinel surveillance of recently-symptomatic individuals in outpatient testing sites may overcome biases and lags in conventional indicators, but the minimal outpatient sentinel surveillance system needed for reliable trend estimation remains unknown. Methods: We used a stochastic, compartmental transmission model to evaluate the performance of various surveillance indicators at reliably triggering an alarm in response to, but not before, a step increase in transmission of SARS-CoV-2. The surveillance indicators included hospital admissions, hospital occupancy, and sentinel cases with varying levels of sampling effort capturing 5, 10, 20, 50 or 100% of incident mild cases. We tested 3 levels of transmission increase, 3 population sizes, and condition of either simultaneous transmission increase, or lagged increase in older population. We compared the indicators' performance at triggering alarm soon after, but not prior, to the transmission increase. Results: Compared to surveillance based on hospital admissions, outpatient sentinel surveillance that captured at least 20% of incident mild cases could trigger alarm 2 to 5 days earlier for a mild increase in transmission and 6 days earlier for moderate or strong increase. Sentinel surveillance triggered fewer false alarms and averted more deaths per day spent in mitigation. When transmission increase in older populations lagged increase in younger populations by 14 days, sentinel surveillance extended its lead time over hospital admissions by an additional 2 days. Conclusions: Sentinel surveillance of mild symptomatic cases can provide more timely and reliable information on changes in transmission to inform decision-makers in an epidemic like COVID-19.


Subject(s)
COVID-19 , Death
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.10.22274869

ABSTRACT

Public health indicators typically used for COVID-19 surveillance can be biased or lag changing community transmission patterns. The United States city of Chicago opportunistically investigated whether sentinel surveillance of recently symptomatic individuals receiving outpatient diagnostic testing for SARS-CoV-2 could accurately assess the instantaneous reproductive number R(t) and provide early warning of changes in transmission. Patients tested at community-based diagnostic testing sites between September 2020 and June 2021, and reporting symptom onset within four days preceding their test, formed the sentinel population. R(t) calculated from sentinel cases agreed well with R(t) from other indicators. Retrospectively, trends in sentinel cases did not precede trends in COVID-19 hospital admissions by any identifiable lead time. In deployment, sentinel surveillance held an operational recency advantage of nine days over hospital admissions. The promising performance of opportunistic sentinel surveillance suggests that deliberately designed outpatient sentinel surveillance would provide robust early warning of increasing transmission.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.04.21261595

ABSTRACT

BACKGROUND Structural racism has driven and continues to drive policies that create the social, economic, and community factors resulting in residential segregation, lack of access to adequate healthcare, and lack of employment opportunities that would allow economic mobility. This results in overall poorer population health for minoritized people. In 2020, Black and Hispanic/Latinx communities throughout the United States, including the state of Illinois, experienced disproportionately high rates of COVID-19 cases and deaths. Public health officials in Illinois implemented targeted programs at state and local levels to increase intervention access and reduce disparities. METHODS To quantify how disparities in COVID outcomes evolved through the epidemic, data on SARS-CoV-2 diagnostic tests, COVID-19 cases, and COVID-19 deaths were obtained from the Illinois National Electronic Disease Surveillance System for the period from March 1 to December 31, 2020. Relative risks of COVID-19 cases and deaths were calculated for Black and Hispanic/Latinx vs. White residents, stratified by age group and epidemic interval. Deaths attributable to racial/ethnic disparities in incidence and case fatality were estimated with counterfactual simulations. RESULTS Disparities in case and death rates became less drastic after May 2020, but did not disappear, and were more pronounced at younger ages. From March to May of 2020, the risk of a COVID-19 case for Black and Hispanic/Latinx populations was more than twice that of Whites across all age groups. The relative risk of COVID-19 death reached above 10 for Black and Hispanic/Latinx individuals under 50 years of age compared to age-matched Whites in the early epidemic. In all Illinois counties, relative risk of a COVID-19 case was the same or significantly increased for minoritized populations compared to the White population. 79.3% and 86.7% of disparities in deaths among Black and Hispanic/Latinx populations, respectively, were attributable to differences in age-adjusted incidence compared to White populations rather than differences in case fatality ratios. CONCLUSIONS Racial and ethnic disparities in the COVID-19 pandemic are products of society, not biology. Considering age and geography in addition to race/ethnicity can help to identify the structural factors driving poorer outcomes for certain groups. Studies and policies aimed at reducing inequalities in disease exposure will reduce disparities in mortality more than those focused on drivers of case fatality.


Subject(s)
COVID-19 , Mitochondrial Diseases , Encephalitis, Arbovirus
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.27.21259530

ABSTRACT

In managing COVID-19 with non-pharmaceutical interventions, occupancy of intensive care units (ICU) is often used as an indicator to inform when to intensify mitigation and thus reduce SARS-CoV-2 transmission, strain on ICUs, and deaths. However, ICU occupancy thresholds at which action should be taken are often selected arbitrarily. We propose a quantitative approach using mathematical modeling to identify ICU occupancy thresholds at which mitigation should be triggered to avoid exceeding the ICU capacity available for COVID-19 patients. We used a stochastic compartmental model to simulate SARS-CoV-2 transmission and disease progression, including critical cases that would require intensive care. We calibrated the model for the United States city of Chicago using daily COVID-19 ICU and hospital census data between March and August 2020. We projected ICU occupancies from September to May 2021 under two possible levels of transmission increase. The effect of combined mitigation measures was modeled as a decrease in the transmission rate that took effect when projected ICU occupancy reached a specified threshold. We found that mitigation did not immediately eliminate the risk of exceeding ICU capacity. Delaying action by 7 days increased the probability of exceeding ICU capacity by 10-60% and this increase could not be counteracted by stronger mitigation. Even under modest transmission increase, a threshold occupancy no higher than 60% was required when mitigation reduced the reproductive number Rt to just below 1. At higher transmission increase, a threshold of at most 40% was required with mitigation that reduced Rt below 0.75 within the first two weeks after mitigation. Our analysis demonstrates a quantitative approach for the selection of ICU occupancy thresholds that considers parameter uncertainty and compares relevant mitigation and transmission scenarios. An appropriate threshold will depend on the location, number of ICU beds available for COVID-19, available mitigation options, feasible mitigation strengths, and tolerated durations of intensified mitigation.


Subject(s)
COVID-19
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.14.21255476

ABSTRACT

Background Availability of SARS-CoV-2 testing in the United States (U.S.) has fluctuated through the course of the COVID-19 pandemic, including in the U.S. state of Illinois. Despite substantial ramp-up in test volume, access to SARS-CoV-2 testing remains limited, heterogeneous, and insufficient to control spread. Methods We compared SARS-CoV-2 testing rates across geographic regions, over time, and by demographic characteristics (i.e., age and racial/ethnic groups) in Illinois during March through December 2020. We compared age-matched case fatality ratios and infection fatality ratios through time to estimate the fraction of SARS-CoV-2 infections that have been detected through diagnostic testing. Results By the end of 2020, initial geographic differences in testing rates had closed substantially. Case fatality ratios were higher in non-Hispanic Black and Hispanic/Latino populations in Illinois relative to non-Hispanic White populations, suggesting that tests were insufficient to accurately capture the true burden of COVID-19 disease in the minority populations during the initial epidemic wave. While testing disparities decreased during 2020, Hispanic/Latino populations consistently remained the least tested at 1.87 tests per 1000 population per day compared with 2.58 and 2.87 for non-Hispanic Black and non-Hispanic White populations, respectively, at the end of 2020. Despite a large expansion in testing since the beginning of the first wave of the epidemic, we estimated that over half (50-80%) of all SARS-CoV-2 infections were not detected by diagnostic testing and continued to evade surveillance. Conclusions Systematic methods for identifying relatively under-tested geographic regions and demographic groups may enable policymakers to regularly monitor and evaluate the shifting landscape of diagnostic testing, allowing officials to prioritize allocation of testing resources to reduce disparities in COVID-19 burden and eventually reduce SARS-CoV-2 transmission.


Subject(s)
COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.20.21254022

ABSTRACT

ABSTRACT Social distancing measures, such as restricting occupancy at venues, have been a primary intervention for controlling the spread of COVID-19. However, these mobility restrictions place a significant economic burden on individuals and businesses. To balance these competing demands, policymakers need analytical tools to assess the costs and benefits of different mobility reduction measures.In this paper, we present our work motivated by our interactions with the Virginia Department of Health on a decision-support tool that utilizes large-scale data and epidemiological modeling to quantify the impact of changes in mobility on infection rates. Our model captures the spread of COVID-19 by using a fine-grained, dynamic mobility network that encodes the hourly movements of people from neighborhoods to individual places, with over 3 billion hourly edges. By perturbing the mobility network, we can simulate a wide variety of reopening plans and forecast their impact in terms of new infections and the loss in visits per sector. To deploy this model in practice, we built a robust computational infrastructure to support running millions of model realizations, and we worked with policymakers to develop an intuitive dashboard interface that communicates our model’s predictions for thousands of potential policies, tailored to their jurisdiction. The resulting decision-support environment provides policymakers with much-needed analytical machinery to assess the tradeoffs between future infections and mobility restrictions.


Subject(s)
COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.15.20131979

ABSTRACT

Fine-grained epidemiological modeling of the spread of SARS-CoV-2 -- capturing who is infected at which locations -- can aid the development of policy responses that account for heterogeneous risks of different locations as well as the disparities in infections among different demographic groups. Here, we develop a metapopulation SEIR disease model that uses dynamic mobility networks, derived from US cell phone data, to capture the hourly movements of millions of people from local neighborhoods (census block groups, or CBGs) to points of interest (POIs) such as restaurants, grocery stores, or religious establishments. We simulate the spread of SARS-CoV-2 from March 1-May 2, 2020 among a population of 105 million people in 10 of the largest US metropolitan statistical areas. We show that by integrating these mobility networks, which connect 60k CBGs to 565k POIs with a total of 5.4 billion hourly edges, even a relatively simple epidemiological model can accurately capture the case trajectory despite dramatic changes in population behavior due to the virus. Furthermore, by modeling detailed information about each POI, like visitor density and visit length, we can estimate the impacts of fine-grained reopening plans: we predict that a small minority of "superspreader" POIs account for a large majority of infections, that reopening some POI categories (like full-service restaurants) poses especially large risks, and that strategies restricting maximum occupancy at each POI are more effective than uniformly reducing mobility. Our models also predict higher infection rates among disadvantaged racial and socioeconomic groups solely from differences in mobility: disadvantaged groups have not been able to reduce mobility as sharply, and the POIs they visit (even within the same category) tend to be smaller, more crowded, and therefore more dangerous. By modeling who is infected at which locations, our model supports fine-grained analyses that can inform more effective and equitable policy responses to SARS-CoV-2.


Subject(s)
COVID-19
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.27.20112987

ABSTRACT

We demonstrate the ability of statistical data assimilation to identify the measurements required for accurate state and parameter estimation in an epidemiological model for the novel coronavirus disease COVID-19. Our context is an effort to inform policy regarding social behavior, to mitigate strain on hospital capacity. The model unknowns are taken to be: the time-varying transmission rate, the fraction of exposed cases that require hospitalization, and the time-varying detection probabilities of new asymptomatic and symptomatic cases. In simulations, we obtain accurate estimates of undetected (that is, unmeasured) infectious populations, by measuring the detected cases together with the recovered and dead - and without assumed knowledge of the detection rates. These state estimates require a measurement of the recovered population, and are tolerant to low errors in that measurement. Further, excellent estimates of all quantities are obtained using a temporal baseline of 112 days, with the exception of the time-varying transmission rate at times prior to the implementation of social distancing. The estimation of this transmission rate is sensitive to contamination in the data, highlighting the need for accurate and uniform methods of reporting. Finally, we employ the procedure using real data from Italy reported by Johns Hopkins. The aim of this paper is not to assign extreme significance to the results of these specific experiments per se. Rather, we intend to exemplify the power of SDA to determine what properties of measurements will yield estimates of unknown model parameters to a desired precision - all set within the complex context of the COVID-19 pandemic.


Subject(s)
COVID-19
9.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2005.12441v2

ABSTRACT

We demonstrate the ability of statistical data assimilation to identify the measurements required for accurate state and parameter estimation in an epidemiological model for the novel coronavirus disease COVID-19. Our context is an effort to inform policy regarding social behavior, to mitigate strain on hospital capacity. The model unknowns are taken to be: the time-varying transmission rate, the fraction of exposed cases that require hospitalization, and the time-varying detection probabilities of new asymptomatic and symptomatic cases. In simulations, we obtain accurate estimates of undetected (that is, unmeasured) infectious populations, by measuring the detected cases together with the recovered and dead - and without assumed knowledge of the detection rates. Given a noiseless measurement of the recovered population, excellent estimates of all quantities are obtained using a temporal baseline of 101 days, with the exception of the time-varying transmission rate at times prior to the implementation of social distancing. With low noise added to the recovered population, accurate state estimates require a lengthening of the temporal baseline of measurements. Estimates of all parameters are sensitive to the contamination, highlighting the need for accurate and uniform methods of reporting. The aim of this paper is to exemplify the power of SDA to determine what properties of measurements will yield estimates of unknown parameters to a desired precision, in a model with the complexity required to capture important features of the COVID-19 pandemic.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL